Any concluding thoughts?
Jonas: We wanted to test the limits of the technology, and the worst scenario would be if an interfering in-band carrier, or two or four as we had today, killed all your 64 channels. That’s probably the biggest worry for everyone adopting this technology; it’s like all or nothing. And we clearly saw: That’s not the case. We created an absolute worst case with four interfering transmitters, and while the WMAS belt pack that was closest to these interfering devices broke down, the rest of the system was still operating perfectly.
Marco: Just the belt pack which was very stressed. After about 80 metres, I started to get drop-outs as the belt pack was just a few centimetres from an interfering transmitter, but I was still able to communicate. When the interfering device was put at a distance of 25 cms, the range increased to more than 100 metres.
Jonas: One of the benefits that WMAS definitely has is that we are scanning into the background noise of the actual carriers we are using. That has never been possible before.
Marco: Yeah, with all our fancy spectrum analysers we can basically only measure all the frequencies we are not using. Because if someone sits on top of one of our frequencies, we cannot see it. That’s a fact.
Jonas: But with WMAS we can. So not only does it work better with bad interference and is resilient to that, it’s also much better at detecting it and helping us locate the source.
Conclusion
WMAS passed the co-existence check with flying colours. It worked perfectly when sandwiched in between a narrowband analogue IEM system and a narrowband digital wireless microphone system, and did not affect these systems either. Its lower spectral density and power of a single narrowband microphone are key for this friendly co-existence. Furthermore, the fact that WMAS was positioned in what is usually a security or guard band shows that it can contribute to higher spectrum efficiency, allowing much denser deployments at multi-stage festivals and installations in general.
When faced with multiple in-band interferers, simulating third-party, unapproved frequency use, the system still performed extremely well where narrowband systems would have failed if interference happened on their frequency. The WMAS prototype reliably indicated the presence of these narrowband interferers and suppressed them.
Only when a fourth interferer was added directly onto the WMAS channel, with all four in-band interferers positioned very close to each other, a single WMAS belt pack failed, the remainder of the system was stable. In cases like these, WMAS’s ability to detect in-band interference helps the frequency coordinator to quickly locate and eliminate the source of interference.